High resolution wildfires simulation, forecasting tools to estimate front evolution, fire induced weather and pollution

J.B. Filippi F. Bosseur

SPE, CNRS UMR6134, Université de Corse

Our problem

Very large fires

- Multi-physics, multi-scale problem :
 - combustion, emissions,
 - radiation/fluid dynamics,
 - atmospheric physics.
- Inhomogeneous boundary conditions :
 - atmosphere,
 - fuel,
 - elevation.

Approach

- High resolution fuels (sub-meter),
- reduced front velocity model,
- front tracking method.
- micro scale atmospheric model,
- fluxes as sub-mesh parametrization.

0

Wildland fire code ecosystem

Models and Codes

OBL (050111)

- GPL (CECILL)
- mesonh.aero.obsmip.fr/mesonh51
- Météo-France/CNRM/LA
- Non-Hydrostatic anelastic,
- LES resolution (3D sub-grid TKE),
- Piecewise Parabolic Method
- explicit leapfrog scheme,
- two-way nesting,
- curvilinear grid,
- Fluxes type boundary condition (SURFEX surface module)

Lagrangian front tracking

Wildfires

Fire model

Resolution problem: Asynchronous front tracking method

- Active nodes,
- sub meter resolution for extinction,
- dynamic addition and removal of markers,
- front depth λ diagnostic,
- filtering distance for interface refinement, p_r
- no explicit time step (event scheduler),
- Integration in space (CFL constant adaptive time step)

Balbi front velocity model

Fuel

Wildfires

- Mass load σ
 - height e
- ullet emissivity ϵ_V
- moisture content m
- ignition temperature T_i
- heat capacity c_{p,V}
- combustion enthalpy Δh

Flame

- Stoichiometry s
- Pyrolysis mass loss rate $\dot{\sigma}$
- Radiant fraction χ_0
- Front depth λ , curvature K
- Normal wind $(\vec{v}.\vec{n})$ tilts flame γ
- Front velocity (Rate of spread) R

$$R = R_0(\epsilon_v, T_i, e, \sigma, m, T_a) + (1 + \cos K)\chi_0 \Delta h \dot{\sigma} f(\lambda, \gamma)$$
$$\tan \gamma = \tan \alpha + \rho_a(\vec{v}.\vec{n})/2(1 + s)\dot{\sigma}$$

$$f(\lambda, \gamma) = \frac{\lambda}{2 + \mu\lambda \cos\gamma} (1 + \sin\gamma - \cos\gamma) \mathcal{H}_{\mathbb{R}^+}(\gamma)$$

Coupling fronts and atmosphere

Conclusion

Wildfires

Coupling strategy

- Pronostic fronts
- Diagnostic fluxes

Burning map

- Time of first marker occurrence,
- polygon filling method,
- updated locally at each marker update.

Fluxes layers

- One layer for each variable, compound,
- diagnosed as a function of actual and arrival time

Sub-mesh integration - Combustion and emissions

Integration of local fluxes

$$\Phi^{ ext{atmo}}(t) = \int_{\mathcal{T}_c} \Phi(\mathbf{x}, t),$$

- Flux model Φ at fire resolution \mathcal{I}_c
- Subgrid resolution Δx^{at} typically < 1m

Different fluxes models for each variables

Gamma approximation :

$$\Phi(\mathbf{x},t) = \chi_b^0 exp(-4m/m_e) \Phi_{\mathbf{x}}^t$$

• Or constant during time τ (burning time) :

$$\Phi(\mathbf{x},t) = \frac{\Phi_{\mathbf{x}}^t}{\tau} \Pi_{[0,1]} (\frac{t - t^a(\mathbf{x})}{\tau})$$

- Π_[0,1] gate function on interval [0, 1],
- Φ^t_x total heat,water, SO2 ... released

Input/outputs

Wildfires

View in real Fire

Simulation

Letia experiment

- Use of a LIDAR on field experiment
- Heat flux, flame and plume analysis

Letia experiment - Simulation

➤ View Video

Similation Letia experiment + Lidar Scan

Smoke plume structure

- Domain size : 2.5 km x 2.5 km x 1.5 km ($\Delta x = 50 m$), homogeneous mediterranean schrubs
- Similarities in observed/simulated structures(LES simulation, smoke passive tracer)

Ozone titration

Favone

Effect of CO injection, coupled chemistry: ozone depletion in the plume

Fireflux experiment

Grass fire

Experiment

- Experiment by Clements et al,
- 400 by 800 meters
- tall grass (1 meter).
- 10m / 25m atmo resolution,
- first grid cell height : 2m.
- fuel loading $\sigma = 1.08 kg.m^{-2}$
- nominal heat fluxes about 315KW.m⁻²

Numerical parameters

- Width 1000m, height 300m,length 2000m
- Open boundary condition, relaxation over 6 top mesh cell
- initial condition from radio-sounding
- Filtering distance $p_r = 0.5m$

FireFlux simulation

Fireflux 10m resolution ForeFire/MesoNH

28 meters height vertical wind

Favone

Arrival time

Favone

Tower passing times isochrones, Acceleration due to fire coupling.

Wildfires

Large Wildfire (3000Ha total, 2000 simulated)

- July 2009,
- 50/200/600/2400m nested atmospheric resolution,
- 0.1 / 10m front resolution,
- 5m fluxes resolution,
- Injection of heat, water,
- 24 millions gridpoints (64 levels)

	Tstep (s)	XY	XY (m)	CPU	Tsim	TexecIO	TexecComp
Mod1	6	250*300	2400	200	6h	27'	20'
Mod2	1.5	240*400	600	512	3h	28'	50'
Mod3	0.5	240*240	200	256	3h	4h20	2h
Mod4	0.25	300*300	50	900	10h	10h	l 8h

Large Wildfire

4 nested models

Large Wildfire

Valle Male Fire

Combustion to the atmosphere, Valle Male Fire. IDEA large simulation

Wildfires

results

Isochroneous simulated (grey); reported (yellow)

results

Observed/simulated plume

results

Vorticity on streamlines

Wildfires

Conclusion

Summary

- Fire code has been coupled to a mesoscale atmospheric model Meso-NH for lava/wildfire simulation),
- MesoNH/LES seems to capture well at high resolution
 - induced wind, convection,
 - plumes, smoke distribution,
- parallel version run real time on a large number of processors.
- good agreement with observed amplitudes and slower fluctuations.

Problems

- Lagrangian code not rock solid...
- May require better fluxes models

Perspectives

- More simulations with chemistry,
- Fuel maps and fuel models derived from surface!

Merci

ANR-09-COSI-006 http://anridea.univ-corse.fr

