

Journée scientifique du Centre de Calcul et de la Maison de la Simulation

Sialic acids and diabetes: impact of desialylation on insulin receptor's functionality

GUILLOT Alexandre

Supervisors: DURLACH Vincent

BLAISE Sébastien

CNRS UMR 7369 MEDyC Team "matrix aging and vascular remodelling"

Supervisors

In vivo / In vitro

Dr Sébastien BLAISE Pr Vincent DURLACH

In silico

Dr Stéphanie BAUD

Pr Manuel DAUCHEZ

Diabetes

- Abnormal and chronic increase of blood sugar level
- Type 1 diabetes
 - Low insulin production
 - Genetic factors
- Type 2 diabetes
 - Ineficient insulin
 - Aging, obesity...

80 % of all diabetes

Insulin receptor

Aim of the study

Sialic acids and diabetes: impact of desialylation on insulin receptor's functionality

N-glycan chains

N-glycan chains

Sugar or modified sugar linked to proteins' specific residues (asparagine)

- Various purposes...
 - Protein folding
 - Reduce protein degradation
 - Protein-protein interactions
 - •

- ... depending on :
 - Glycan chain localisation
 - Protein's partners
 - Glycan type

N-glycan chains

3 groups :

High mannose

Many mannose, 2 N-acetylglucosamines

Hybrid

Mix between high mannose and complex types

Complex

Various types of saccharides:

- N-acetylglucosamine
- Mannose
- Galactose
- Fucose
- Sialic acids

+ Various lengths and antenna number in each group

Insulin receptor and sialic acids

What are the consequences of removing sialic acids over the insulin receptor mechanisms?

First step: will the removal of sialic acids change the glycan chain dynamics

Choice of the structure

According to literature and the most common structures found: 4 chains have been selected

Force field

- GLYCAM, AMBER...
 - Already used for glycan chains
 - Rarely used for both glycan + protein
- OPLS (all atoms)
 - Often used for proteins
 - Miss glycan atoms description

 Missing atoms added by homology with already described atoms

Construction

Each chain link is separately built using Avogadro software

Residues are then linked 1 by 1 with energy minimisation at each step until the final glycan chain is obtained —

Molecular dynamic simulations (GROMACS)

Molecular dynamic simulations

- About 13,000 atoms during simulation
- Computation time (500ns) :
 - 10 nodes
 - 160 cores
 - 60 h
- Output files:
 - 12 GB
 - 500,000 positions saved for each atom (1/picosecond)
 - Light version : no more water and 50,000 positions

Results analysis: clustering

Without SA

 Objective: identify mains conformations that the chain will adopt.

	Cluster #1	Cluster #2	Other
With SA	72%	14%	14% (18 clusters)
Without SA	28%	24%	48% (41 clusters)

- Cluster size :
 - Less and bigger clusters for chain with SA
 - More and smaller clusters for chain without SA

Results analysis: clustering

Cluster #2 with SA = cluster #1 without SA

Results analysis: dihedral angle

- Objective: identify flexibility points by measuring phi, psi and omega dihedral angles.
- 3 angle types:
 - 1 single thin pic: less flexibility
 - 1 single large pic: more flexibility
 - More than 1 pic: many conformations
- Antenna fixation sites are more flexible
- Removing sialic acid can change dihedral angle

Results analysis: antenna movements (RMSF)

- Objective: measure the motion of each antenna
- RMSF : root mean square fluctuation
- Removing sialic acids increase antenna motions

Results analysis: umbrella visualisation

Objective: visualise the covered zone by each antenna

Results analysis: umbrella visualisation

Antenna 1

Antenna 1 displays the 2 previously identified clusters

Results analysis: umbrella visualisation

Antenna 2 is more flexible when sialic acids are removed

Conclusion

- Impact of desialylation on glycan chains
 - Changes average conformations
 - Increases antenna flexibility
 - Covered zone displays different profiles

Further work

- Impact of desialylated N-glycan chains on insulin receptor
- Objective: show conformational modifications of IR when SA are removed
 - Stucture
 - Insulin binding site
 - Dimerization
 - Insulin receptor activity
- N-glycan chain linked to the receptor
- New molecular dynamic simulations

Further work

- A whole new challenge :
 - Insulin receptor: 18 potential glycan sites
 - Addition of plasma membrane
 - HUGE system
 - 620,000 atoms
 - 20 nodes
 - 320 cores
 - 130 h for a 500 ns simulation
 - Terabytes of data

13,000 atoms

620,000 atoms

Further work

- kE: induce the removal of sialic acids from insulin receptor
- P-IR: phosphorylation ≈ activation of the IR
- Correlation between insulin receptor sialylation and activity

 We need in silico studies to understand this mechanism at a molecular level

Acknowledgements

UMR CNRS/URCA 7369 MEDyC

Team 2 "Matrix aging and Vascular remodelling"
SiRMa Laboratory

Sébastien BLAISE
Vincent DURLACH
Manuel DAUCHEZ
Laurent DUCA
Laurent DEBELLE
Laurent MARTINY

Stéphanie BAUD François-Xavier MAQUART Maison de la simulation de Champagne-Ardenne

